// $Id$ /* The client and server both need to know the shared memory key and size. To prevent headaches, I've put those into a header they both can share. */ #include "shmem.h" #include "ace/Log_Msg.h" #if defined (ACE_LACKS_SYSV_SHMEM) int main (int, char *[]) { ACE_ERROR_RETURN ((LM_ERROR, "System V Shared Memory not available on this platform\n"), 100); } #else // ACE_LACKS_SYSV_SHMEM int main (int, char *argv[]) { /* You can use the ACE_Malloc template to create memory pools from various shared memory strategies. It's really cool. We're not going to use it. Instead, I want to get to the roots of it all and directly use ACE_Shared_Memory_SV. Like many ACE objects, this is a wrapper around OS services. With this constructor we create a shared memory area to use. The ACE_CREATE flag will cause it to be created if it doesn't already exist. The SHM_KEY value (from shmem.h) uniquely identifies the segment and allows other apps to attach to the same segment. Execute 'ipcs -m' before and after starting this app to see that the segment is created. (I can't for the life of me correlate the SHM_KEY value back to the key/id reported by ipcs though.) */ ACE_Shared_Memory_SV shm_server (SHM_KEY, SHMSZ, ACE_Shared_Memory_SV::ACE_CREATE); /* The constructor created the segment for us but we still need to map the segment into our address space. (Note that you can pass a value to malloc() but it will be silently igored.) The void* (cast to char*) that is returned will point to the beginning of the shared segment. */ char *shm = (char *) shm_server.malloc (); /* Since we're asking to create the segment, we will fail if it already exists. We could fall back and simply attach to it like the client but I'd rather not assume it was a previous instance of this app that left the segment around. */ if (shm == 0) ACE_ERROR_RETURN ((LM_ERROR, "%p\n\t(%P|%t) Cannot create shared memory segment.\n" "\tUse 'ipcs' to see if it already exists\n", argv[0]), 100); /* This second pointer will be used to walk through the block of memory... */ char *s = shm; /* Out of curiosity, I added this output message. The tests I've done so far show me the same address for client and server. What does your OS tell you? */ ACE_DEBUG ((LM_INFO, "(%P|%t) Shared Memory is at 0x%x\n", shm )); /* At this point, our application can use the pointer just like any other given to us by new or malloc. For our purposes, we'll copy in the alpabet as a null-terminated string. */ for (char c = 'a'; c <= 'z'; c++) *s++ = c; *s = '\0'; /* Using a simple not-too-busy loop, we'll wait for the client (or anyone else) to change the first byte in the shared area to a '*' character. This is where you would rather use semaphores or some similar "resource light" approach. */ while (*shm != '*') ACE_OS::sleep (1); /* Let's see what the client did to the segment... */ for (s = shm; *s != '\0'; s++) putchar (*s); putchar ('\n'); /* If you're done with the segment and ready for it to be removed from the system, use the remove() method. Once the program exits, do 'ipcs -m' again and you'll see that the segment is gone. If you just want to terminate your use of the segment but leave it around for other apps, use the close() method instead. The free() method may be tempting but it doesn't actually do anything. If your app is *really* done with the shared memory then use either close() or remove(). */ if (shm_server.remove () < 0) ACE_ERROR ((LM_ERROR, "%p\n", "remove")); return 0; } #endif /* ACE_LACKS_SYSV_SHMEM */